





# Fractional order PID: recent developments

## Speaker: Prof. YangQuan Chen

Mechatronics, Embedded Systems and Automation (MESA) Lab, Dept. of Mechanical Engineering, School of Engineering, University of California, Merced, CA 95343 USA. (e-mail: <u>ychen53@ucmerced.edu</u>)

IFAC-V World Congress Preconference Workshop, June 30th, 2020 @ Zoom

## Acknowledgements:

- Thanks go to Professors Liuping Wang and Antonio Visioli for organizing this wonderful PID Workshop @ IFAC-V WC 2020.
- Thanks go to Drs. Zhenlong Wu and Jie Yuan for joint work in this talk and slides preparations







#### Outline

- I. Background and Research Questions
- II. The Idea of "More Flat Phase" Design
- **III. FO-[PID] Controller Tuning**
- IV. The Animation of Feasible Regions of FOPI and IO-PID

under Fairness Comparison Conditions

V. The FOPI application in compensation of actuator rate limit VI. Conclusions



Igor Podlubny. "Fractional-order systems and Pl<sup>1</sup>D<sup>µ</sup>-controllers". IEEE Trans. Automatic Control,44(1): 208–214, 1999. YangQuan Chen, Dingyu Xue, and Huifang Dou. "Fractional Calculus and Biomimetic Control". IEEE Int. Conf. on Robotics and Biomimetics (<u>RoBio04</u>), August 22-25, 2004, Shenyang, China. 2020/6/30 IFAC-V WC 2020 PID Preconference Workshop





## Control Engineering Practice Best Paper Prize

Awarded jointly by Elsevier Ltd and the International Federation of Automatic Control (IFAC) for the best paper published in the period 2008-2011

Awarded to

y. Chen

for the paper

Tuning and auto-tuning of fractional order controllers for industry applications

(Vol. 16, No. 7, pp. 798-812)

Christopher Greenwell, Publisher Elsevier Etd.

Prof. Andreas Kugi, Editor-in-Chief Control Engineering/Practice

ractice.

Ü

- Fractional Order System official keyword of IFAC
- pid12.ing.unibsc.it/vC 2020 PID Preconference Workshop







#### **Background and Presentation Contents**

- ✓ The fractional order controllers have attracted many attentions such as fractional order proportional integral derivative (FOPID) controller<sup>[1]</sup>.
- ✓ The FOPID has five parameters to tune, which means the FOPID can offer better performance at the cost of extra implementation efforts than the regular PID.
- ✓ A tuning method with specification constraints, a specified gain crossover frequency, a specified phase margin and the flat phase constraint, is proposed to design the robust fractional order proportional integral (FOPI) controller<sup>[2]</sup>, fractional order [proportional integral] (FO[PI]) controller<sup>[3]</sup> and fractional order [proportional derivative] (FO[PD]) controller<sup>[4]</sup>.
- ✓ However, how to design a robust FOPI/FOPID controller systematically and theoretically still is an open question.

<sup>[1]</sup> Shah, P., and Agashe, S. (2016). Review of fractional PID controller. Mechatronics, volume (38), 29-41.

<sup>[2]</sup> Luo, Y., Chen, Y.Q., Wang, C.Y., et al. (2010). Tuning fractional order proportional integral controllers for fractional order systems. Journal of Process Control, volume (20), 823-831

<sup>[3]</sup> Luo, Y., and Chen, Y.Q. (2009). Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica, volume (45), 2446-2450.

<sup>[4]</sup> Luo, Y., and Chen, Y.Q. (2012). Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica, volume (48), 2159-2167.







#### **Background and Presentation Contents**

- How to design the satisfactory controller or what specifications should be satisfied ?
   For all controlled systems, the following specifications should be satisfied:
  - 1 A specified gain crossover frequency;
  - 2 A specified phase margin;
  - ③ A flat phase constraint, which means that the open-loop phase is a constant around the given gain crossover frequency and can show the iso-damping property for the system response.
- + How to evaluate the performance of one control strategy under fairness comparison conditions?
  - (i) The performance indexes of the closed-loop system, such as ITAE, IAE and ISE;
  - They are often used for the tuned controllers and different parameters result in different conclusions.
  - (ii) The comparison of the feasibility regions with design specifications for different controllers. The feasibility regions offer a potential optimization space and a larger one means a larger possibility to find the optimal, unique controller.







#### **Background and Presentation Contents**

Based on the discussions above, the remaining questions are:

- (1) How to design a robust fractional order PID controller systematically and theoretically when its parameter number is larger than three?
- (2) Can the FOPID really outperform IOPID under fairness consideration?







#### Outline

- I. Background and Research Questions
- II. The Idea of "More Flat Phase" Design
- **III. FO-[PID] Controller Tuning**
- IV. The Animation of Feasible Regions of FOPI and IO-PID

under Fairness Comparison Conditions

V. The FOPI application in compensation of actuator rate limit VI. Conclusions







#### The Idea of "More Flat Phase" Design

Based on the discussions above, a robust fractional order controller should consider the following specifications :

- 1 A specified gain crossover frequency,  $\omega_{gc}$ ;
- ② A specified phase margin,  $\phi_m$ ;
- (3) A flat phase constraint,  $\frac{d\varphi}{d\omega} = 0$ .





However, when the parameter number of a robust fractional order PID controller is larger, how can we design a robust FOPID systematically and theoretically?

- (1) A specified gain crossover frequency,  $\omega_{gc}$ ;
- 2 A specified phase margin,  $\phi_m$ ;
- **③** More flat phase constraints,

 $\frac{d\varphi}{d\omega} = 0$ ..., *n* is the integer order > 1.  $\frac{d^{(n)}\varphi}{d\omega} = 0$ 







#### The Idea of "More Flat Phase" Design

The advantages of the idea of more flat phase design:

- ✓ More flat phase constraints means more possibilities that the open-loop phase is closer to constant and less sensitive to the gain variation for the closed-loop system.
- ✓ The number of constraints is equivalent to the parameter number of the FOPID controller, which results in a more reasonable parameter space.
- ✓ The FOPID controller designed with more flat phase constraints is more robust.

In the following section, the design method with more flat phase constraints is applied to FO[PID] controller to verify the superiority of the "more flat phase" idea.







#### Outline

- I. Background and Research Questions
- II. The Idea of "More Flat Phase" Design
- **III. FO-[PID] Controller Tuning**
- IV. The Animation of Feasible Regions of FOPI and IO-PID

under Fairness Comparison Conditions

V. The FOPI application in compensation of actuator rate limit VI. Conclusions







#### The control structure

- The control structure combining the controlled plant, the FO[PID] controller and the gain-phase margin tester<sup>[5]</sup> is shown in Fig. 1.
- $P(s) = \frac{K}{Ts+1}e^{-Ls}$  is first order plus time delay (FOPTD) systems.
- $C(s) = \left(K_p + \frac{K_i}{s} + K_d s\right)^r$  is the controller, namely, fractional order [Proportional Integral Derivative] (FO[PID]) controller, which has four parameters and  $r \in (0,2)$ .



Fig. 1. The control structure with the margin tester.

- $M_T(A, \varphi) = Ae^{-j\varphi}$  is the gain-phase margin tester.
- We can obtain the parameter boundaries with the given gain margin (phase margin) when we set φ = 0 (A = 1).

<sup>[5]</sup> Chang, C. H., and Han, K. W. (1990). Gain margins and phase margins for control systems with adjustable parameters. Journal of Guidance, Control, and Dynamics, volume (13), 404–408.







#### The stability region of the FO[PID] controller

• The characteristic equation of the closed-loop system in Fig. 1 can be depicted as,

$$D(K_d, K_p, K_i, r, A, \varphi; s) = (Ts + 1)s^r + Ae^{-j\varphi}e^{-Ls}K(K_ps + K_i + K_ds^2)^r.$$

- The parameter boundaries of  $K_p$  and  $K_i$  with the fixed  $K_d$  and r can be determined by two parts, real root boundary (RRB) and complex root boundary (CRB).
- RRB:  $K_i^r = 0$ .

• CRB: 
$$K_i = \begin{cases} \left| \sqrt{\frac{R^2}{1 + (tan\theta)^2}} \right|, \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ - \left| \sqrt{\frac{R^2}{1 + (tan\theta)^2}} \right|, \theta \in \left(-\pi, -\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right) \end{cases}$$
,  $K_p = \begin{cases} \left| \frac{(K_i - K_d \omega^2) tan\theta}{\omega} \right|, \theta \in (0, \pi) \\ - \left| \frac{(K_i - K_d \omega^2) tan\theta}{\omega} \right|, \theta \in (-\pi, 0) \end{cases}$ 

where  $R = \sqrt{(K_p \omega)^2 + (K_i - K_d \omega^2)^2}$  and  $\theta = atan \frac{K_p \omega}{(K_i - K_d \omega^2)}$ . With all different  $K_d$  and r, we can obtain the complete stability region of the FO[PID] parameters.







#### The FO[PID] controller design with the "more flat phase"

- A specified gain crossover frequency,  $\omega_{gc}$ .
- A specified phase margin, setting A = 1 and  $\varphi = \phi_m$ .
- The more flat phase constraints,

$$\begin{cases} \frac{d\varphi}{d\omega} = \frac{rK_p(K_i + K_d\omega^2)}{(K_p\omega)^2 + (K_i - K_d\omega^2)^2} - L - \frac{T}{1 + (T\omega)^2} = 0 \\ \frac{d^2\varphi}{d\omega^2} = 2rK_p \frac{K_d\omega[(K_p\omega)^2 + (K_i - K_d\omega^2)^2]}{[(K_p\omega)^2 + (K_i - K_d\omega^2)^2]^2} - 2rK_p \frac{(K_i + K_d\omega^2)[K_p^2\omega - 2K_d\omega(K_i - K_d\omega^2)]}{[(K_p\omega)^2 + (K_i - K_d\omega^2)^2]^2} + \frac{2T^2\omega}{[1 + (T\omega)^2]^2} = 0' \end{cases}$$
For the EO[PID] controller

for the FO[PID] controller.







**Tuning procedure** 

#### Step 1:

• Give a stable FOPTD system and two specifications, a specified phase margin,  $\varphi_m$ , and a specified gain crossover frequency,  $\omega_{gc}$ .

#### Step 2:

• Fix  $K_d$  and r, and the CRB by setting  $\varphi = \phi_m$  and A = 1 can be obtained in Fig. 2. Besides, the CRB can be obtained by sweeping over all  $K_d$  in Fig. 3.









**Tuning procedure** 

Step 3:

• Obtain one parameter band by satisfying  $\omega_{gc}$ ,  $\varphi_m$  and  $\frac{d\varphi}{d\omega} = 0$  (red band in Fig. 4) and another parameter band by satisfying  $\omega_{gc}$ ,  $\varphi_m$  and  $\frac{d^2\varphi}{d\omega^2} = 0$  (blue band in Fig. 4). Select any parameter pair in the intersection as the parameters of the FO[PID] controller.









**Tuning procedure** 

Remark 1:

- The frequency response and the time-domain response are presented in Fig. 6 and Fig. 7.
- We can know that the closed-loop system is not sensitive to the variation of the loop gain and the closed-loop system can obtain the satisfactory control performance with the proposed design method.



Fig. 6. The open-loop frequency response of the selected parameter pairs.



Fig. 7. The control performance with the selected parameter pairs.







#### **Tuning procedure**

#### Remark 2:

- With different specification constraints,  $\phi_m$  and  $\omega_{gc}$ , the control performance of FO[PID] and PID can be seen in Fig. 8 –Fig. 9.
- It can be learnt that the overshoot of PID has an obvious increase with the increasing gain.
- The proposed design method is not sensitive to the variation of the loop gain and can obtain the satisfactory control specifications.









**Tuning procedure** 

**Step 4** (To obtain the achievable region of FO[PID]):

• By sweeping over all phase margin,  $\phi_m \in (0, 180^{\circ})$ , and a specified gain crossover frequency,  $\omega_{gc} \in (0, \omega_{max})$ , the achievable region of FO[PID] can be obtained as in Fig. 10. Besides, the pseudo code can be seen in Fig. 11.



Fig. 10. The achievable region of the FO[PID] controller.

```
for \phi_m = 0: small interval : \pi or a given \phi_m
          for r = 0.00001: small interval: 2
               for K_d = -T / AK: small interval: T / AK
                  K_{p} = Eq.(14);
                  K_i = Eq.(13);
              if Eq.(20) and Eq.(21) are satisfied for
the parameter pair \{K_p, K_i\}
              Mark the parameter pair \{K_n, K_i, r, \}
K_{d};
             Mark the corresponding pair \{\omega, \phi_m\};
             end
            end
end
end
end
plot \{\omega, \phi_m\}; % the achievable region
output \{K_p, K_i, r, K_d\}; % the parameter pair output
```

Fig. 11. The pseudo code of the design procedure.







#### **Experimental verification**

- The FO[PID] controller with the proposed design method is applied to the Peltier temperature control platform in Fig. 12.  $k_{gc}$  is added to the control signal to reflect the gain uncertainty.
- The closed-loop system with the designed FO[PID] controller is not sensitive to the variation of the loop gain and the time constant. The closed-loop system can obtain the satisfactory control performance as shown in Fig. 13.



Fig. 12. The control structure of the Peltier platform.





JIFAC 2020 WORLD CONGRESS BERLIN, GERMANY. 12 - 17 JULY, 2020



#### Outline

- I. Background and Research Questions
- II. The Idea of "More Flat Phase" Design
- III. FO-[PID] Controller Tuning
- **IV.** The Animation of Feasible Regions of FOPI and IO-PID

under Fairness Comparison Conditions

V. The FOPI application in compensation of actuator rate limit VI. Conclusions







Now, let's answer the second question: Can the FOPID really outperform IOPID under fairness comparison conditions?

Firstly, how to define the fairness comparison conditions?

#### **Robustness** VS Control Performance

The sizes of the feasibility regions of FOPI and IO-PID are the measurement with the constants of gain crossover frequency  $\omega_{gc}$  and phase margin  $\phi_m$ .







#### The stability region of the FOPI controller

• The characteristic equation of the closed-loop system in Fig. 1 ( $C(s) = K_p + \frac{K_i}{s^r}$ ) can be depicted as,

$$D(K_d, K_p, K_i, r, A, \varphi; s) = (Ts + 1)s^r + Ae^{-j\varphi}e^{-Ls}K(K_ps^r + K_i).$$

- The parameter boundaries of  $K_p$  and  $K_i$  with the fixed r can be determined by two parts, RRB and CRB.
- RRB:  $K_i = 0$ .

• CRB: 
$$K_i = \frac{-(B_1 S_1 + B_2 C_1)}{AKS_2 \omega^r}$$
,  $K_p = \frac{B - (B_1 S_1 C_1 + B_2 C_1^2)}{AKS_1} + \frac{B_1 S_1 C_2 + B_2 C_1 C_2}{AKS_2}$ , (\*)

where  $B_1 = \omega^r C_2 - T \omega^{1+r} S_2$ ,  $B_2 = \omega^r S_2 + T \omega^{1+r} C_2$ ,  $C_1 = \cos(\phi + \omega L)$ ,  $C_2 = \cos\frac{r\pi}{2}$ ,  $S_1 = \sin(\phi + \omega L)$ ,  $S_2 = \sin\frac{r\pi}{2}$ ,  $E = K_i + K_p \omega^r C_2$ ,  $F = K_p \omega^r S_2$ . With all different r, we can obtain the complete stability region of the FOPI parameters.







The FOPI controller design with the specified constraints

- A specified gain crossover frequency,  $\omega_{gc}$
- A specified phase margin, setting A = 1 and  $\varphi = \phi_m$ .
- The flat phase constraint,

$$\frac{d\varphi}{d\omega} = \frac{\left(B_1^2 + B_2^2\right)(EF' - FE') + \left(B_1'B_2 - B_2'B_1\right)(EF' - FE')}{(B_1E + B_2F)^2 + (B_1F - B_2E)^2} - L = 0$$
  
where  $E' = C_2 K_p r \omega^{r-1}$ ,  $F' = S_2 K_p r \omega^{r-1}$ ,  $B_1' = C_2 r \omega^{r-1} - S_2 T (1+r) \omega^r$ , and  
 $B_2' = S_2 r \omega^{r-1} + C_2 T (1+r) \omega^r$ .







The design procedure or pseudo code to obtain feasibility regions

for  $\omega_c = 0$ : small interval:  $\omega_{cmax}$ for  $\phi_m = 0$ : small interval:  $\pi$ for r = 0.0001: small interval: 2  $K_p = Eq.(*.1);$  $K_i = Eq.(*.2);$ if Eq.(10) is satisfied for the pair  $\{K_p, K_i, r\}$ Mark the parameter pair  $\{K_p, K_i, r\}$ ; *Mark the corresponding pair*  $\{\omega_c, \phi_m\}$ *.* end end

end end

• *Plot* { $\omega_c$ ,  $\phi_m$ } % (the feasibility regions)

**Remark 1**: The code can be simplified for obtaining the parameter pair to satisfy the constants: the specific pair { $\omega_c$ ,  $\phi_m$ } and the flat phase.

*Remark* **2**: Note that the feasibility regions of IOPID can be obtained with similar design procedure.







#### The feasibility regions with different delay times (1)



The feasibility region of FOPI is smaller than that of IOPID when *L* is small. However, the feasibility set for FOPI covers the blank part of the feasibility set for IOPID with small values of  $\omega_c$  and  $\phi_m$ .







#### The feasibility regions with different delay times (2)



It can be seen clearly that, for the FOPI controller, the feasibility region of  $\omega_c$  and  $\phi_m$  is much bigger than that of the IOPID controller with the time delay is large.

Fig. 14. The feasibility regions of  $\omega_c$  and  $\phi_m$  for FOPI and IOPID design with T = 1 s and L = 10 s.







#### The feasibility regions with different delay times (3)

How the feasibility regions change when the time delay *L* is changing? Animated feasibility regions can do!



(a) The FOPI with different *L*.

(b) The IOPID with different *L*.

In summary: When  $L/(L + T) \rightarrow 1$ , FOPI is more needed than IOPID. When  $L/(L + T) \rightarrow 0$ , FOPI is the extended option of IOPID.

The FOPID really outperform IOPID under the fairness comparison conditions.

Fig. 15. The feasibility regions of  $\omega_c$  and  $\phi_m$  for FOPI and IOPID design with  $T \in [0.05, 10]$ .







#### The feasibility regions with different delay times (4) The distributions of FOPI and IOPID parameters with $L \in [0.05, 10]$ .



It can be seen that,  $\{K_p, K_i\}$  of FOPI in x –axis and y –axis is larger than that of IOPID.

(a) The FOPI with different *L*.

(b) The IOPID with different *L*.

Fig. 16. The distributions of FOPI and IOPID parameters with  $T \in [0.05, 10]$ .







The stability regions of FO[PI] controller

• RRB: 
$$K_i^r = 0.$$
  
• CRB:  $K_i = \begin{cases} \left| \sqrt{\frac{R^2}{1 + (tan\theta)^2}} \right|, \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ -\left| \sqrt{\frac{R^2}{1 + (tan\theta)^2}} \right|, \theta \in \left(-\pi, -\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right) \end{cases}, K_p = \begin{cases} \left| \frac{(K_i - K_d \omega^2) tan\theta}{\omega} \right|, \theta \in (0, \pi) \\ -\left| \frac{(K_i - K_d \omega^2) tan\theta}{\omega} \right|, \theta \in (-\pi, 0) \end{cases}$   
where  $R = \sqrt{(K_n \omega)^2 + K_i^2}$   $\theta = atan \frac{K_p \omega}{\omega} \in (-\pi, \pi)$ . With all different  $K_d$  and  $r$ , we can obtain the second second

where  $\Lambda = \sqrt{(\Lambda_p \omega)^2 + \Lambda_i^2}$ ,  $\sigma = a \tan \frac{1}{K_i} \in (-\pi, \pi)$ . With all different  $K_d$  and r, we can obtain complete stability region of the FO[PI] parameters.

complete stability region of the FO[FI] parameters.

#### The FO[PI] controller design with the specified constraints

- A specified gain crossover frequency,  $\omega_{gc}$
- A specified phase margin, setting A = 1 and  $\varphi = \phi_m$ .
- The flat phase constraint,

$$\frac{d\varphi}{d\omega} = \frac{rK_pK_i}{(K_p\omega)^2 + K_i^2} - L - \frac{T}{1 + (T\omega)^2} = 0.$$



**IFAC 2020 WORLD CONGRESS** BERLIN, GERMANY. 12 - 17 JULY, 2020



#### Outline

- I. Background and Research Questions
- II. The Idea of "More Flat Phase" Design
- III. FO-[PID] Controller Tuning
- IV. The Animation of Feasible Regions of FOPI and IO-PID

under Fairness Comparison Conditions

V. The FOPI application in compensation of actuator rate limit VI. Conclusions









- Ignored in classical industry
- Low requirements of control performance



- Control challenge in high technology manufacturing
- Precision control
- ➢ Fast response
- Robustness





Cost reduction









- What is actuator rate limit (rate limiter)?
- ✓ Input:  $r(t) = Asin(\omega t)$  Output:  $|\dot{x}(t)| \le R$  (*R*: rate limit value)
- ✓ Fully activated rate limiter: pure triangular output (dramatic magnitude reduction & phase delay)
- Rate limit effect: system identification & control performance



Fig. 17. Steady output (solid) of rate limiter under sinusoidal input (dashed).









- Rate limit effect on (step response based) system identification
- ✓ Step signal: infinite change rate (first derivative) at step time
- ✓ Smaller rate limit value generates more sluggish step response
- Traditional identification (without considering rate limit): mismatched model & unsatisfied control performance



Fig. 19. Unit step response of 1/(s + 1) under different rate limit value.

Real plant:  

$$G(s) = \frac{K}{Ts+1} \& R$$

FOPTD model

$$\widehat{G}(s) = \frac{\widehat{K}}{\widehat{T}s+1}e^{-\widehat{L}s}$$



Fig. 20. Model mismatch of system G(s) under rate limit.







- Rate limit effect on control performance
- ✓ Real plant
  - $G_0(s) = \frac{1}{s+1} \& R \quad (\text{KLTR model})$
- ✓ Identified model (without rate limit)
  - $\hat{G}(s) = \frac{\hat{K}}{\hat{T}s+1}e^{-\hat{L}s}$  (KLT model)
- ✓ Controller: optimal PI controller based on KLTR & KLT model (ISE index)



Fig. 21. Step response (solid) and control signal (dashed) of  $G_0(s)$ .







- Control purpose: compensate phase delay generated by the actuator rate limit
- Controller: flat phase FOPI vs IOPID
- Compensation strategy:
- ✓ design initial controller
- ✓ analyze rate limit effect
- ✓ update design specifications
- ✓ redesign the controller







Step 1: initial flat phase controller design

- Flat phase implementation
- ✓ Bode plot:  $\frac{d(\arg(C(j\omega)G(j\omega)))}{d\omega}\Big|_{\omega=\omega_b} = 0$ ✓ Nyquist plot:  $\arg\left(\frac{d(C(j\omega)G(j\omega))}{d\omega}\right)\Big|_{\omega=\omega_b} = \Phi_m$
- Flat phase in Nyquist plot can applied to general minimum-phase system  $\sqrt{\frac{dL(j\omega)}{d\omega}} = G(j\omega)\frac{dC(j\omega)}{d\omega} + C(j\omega)G(j\omega)\left(\frac{\frac{d\ln|G(j\omega)|}{d\omega}}{d\omega} + \frac{\frac{d\angle G(j\omega)}{d\omega}}{d\omega}\right)$







Step 1: initial flat phase controller design

• Bode integrals (minimum-phase system):

$$\checkmark \ \angle G(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{dln}|G(j\omega)|}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \qquad \nu = \ln \frac{\omega}{\omega_0}$$
$$\checkmark \ \ln|G(j\omega_0)| = \ln|K| - \frac{\omega_0}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}(\frac{\angle G(j\omega)}{\omega})}{\mathrm{d}\nu} \ln \coth \frac{|\nu|}{2} \quad (K: \text{steady-state gain})$$

• Flat phase approximation  $\checkmark \frac{\mathrm{dln}|G(j\omega)|}{\mathrm{d}\omega} \approx \frac{2}{\pi\omega} \angle G(j\omega_0) \text{ or } \frac{\mathrm{dln}|G(j\omega)|}{\mathrm{d}\omega} \approx \frac{2}{\pi\omega} (\angle G(j\omega_0) + \tau\omega_0) \quad (G(s) = G_0(s)e^{-\tau s})$ 

$$\sqrt{\frac{d\omega}{d\omega}} \approx \frac{\omega_0}{\omega_0} \approx \frac{\omega_0}{\omega_0} + \frac{\omega_0}{\omega_0} = \frac{\omega_0}{\omega_0} (d\ln|G(j\omega_0)| - \ln|K|)$$







Step 2: analyze rate limit effect in closed-loop system

- Describing function of the rate limiter
- $\checkmark N(j\omega,\omega_{onset}) = \frac{4}{\pi} \frac{\omega_{onset}}{\omega} e^{-j \arccos \frac{\pi}{2} \frac{\omega_{onset}}{\omega}}$

Step 3: design specifications update rule

- Original:  $\omega_b \& \Phi_m$
- Update rule:

 $\checkmark \ \omega_b^* = \omega_b |N(j\omega_b)|^{\frac{\pi\omega_b \ln 10}{2(\Phi_m - \pi)}} \text{ or } \omega_b^* = \omega_b |N(j\omega_b)|^{\frac{\pi\omega_b \ln 10}{2(\Phi_m - \pi + \tau\omega_b)}}$  $\checkmark \ \Phi_m^* \approx \Phi_m - \angle N(j\omega_b^*) - (G(j\omega_b) - \angle G(j\omega_b^*))$ 

Step 4: redesign the controller







#### Simulation verification

- Plant model
- ✓  $G(s) = \frac{1}{2s+1}e^{-0.1s}$  R = 1
- Design specifications:  $\omega_b = 0.85 \ rad/s \ \& \ \Phi_m = 50^\circ$
- Initial flat phase controller
- ✓  $C_1(s) = 0.84 + \frac{2.17}{s} + 0.86s$ ✓  $C_2(s) = 0.55 + \frac{1.57}{s^{0.91}}$
- Compensated controller
- $\checkmark \quad \tilde{C}_1(s) = 1.92 + \frac{1.64}{s} + 0.31s$
- $\checkmark \quad \tilde{C}_2(s) = 1.52 + \frac{1.43}{s^{0.90}}$



Fig. 22. Bode plots of open-loop system after compensation: IOPID(left); FOPI(right)









Experimental verification: Peltier temperature control platform

- Plant model
- ✓  $G(s) = \frac{0.1646}{51.5028s+1}e^{-1s}$  R = 1.5&1
- Design specifications:  $\omega_b = 0.05 \ rad/s \ \& \ \Phi_m = 45^\circ$
- Initial flat phase controller
- ✓  $C_1(s) = 7.53 + \frac{0.94}{s} + 75.86s$  &  $C_2(s) = 6.15 + \frac{0.90}{s^{0.94}}$
- Compensated controller

✓ 
$$R = 1.5$$
:  $\tilde{C}_1(s) = 14.16 + \frac{0.56}{s} + 27.53s$  &  $\tilde{C}_2(s) = 12.85 + \frac{0.63}{s^{0.92}}$ 

✓ 
$$R = 1$$
:  $\tilde{C}_1(s) = 16.46 + \frac{0.42}{s} + 53.76s$  &  $\tilde{C}_2(s) = 12.31 + \frac{1.21}{s^{0.58}}$ 













#### Conclusions

- The idea of the "more flat phase" is proposed to design the fractional order controller.
- The tuning procedure of the FO[PID] with "more flat phase" specification constraints is deduced and discussed.
- The effectiveness of the FO[PID] is verified by experiments.
- The FOPID really outperform IOPID under the fairness comparison conditions, which is verified by the animation of feasible regions of FOPI and IO-PID.
- The FOPI has been successfully applied to the compensation of actuator rate limit effect.

## What's next?

- Fractional Order PID tuning,
- Smarter PID (digital twin, edge computing, embedded AI etc.)

## Can PID still be PHD topic?

• Yes. Starting from this slide!

[1] IFAC PID 2018 Conference Plenary talk: "Fractional order PID control: better than the best issue and what's next" <u>https://youtu.be/B3BurjUYPOA</u>
[2] AA Dastjerdi, BM Vinagre, YQ Chen, SH HosseinNia. "Linear fractional order controllers; A survey in the frequency domain". Annual Reviews in Control, <u>https://doi.org/10.1016/j.arcontrol.2019.03.8(49)</u>, 51-70, 2019
[3] Shah, P., and Agashe, S. (2016). Review of fractional PID controller. Mechatronics, volume (38), 29-41.

#### HANDBOOK OF PI AND PID CONTROLLER TUNING RULES

**3rd Edition** 

#### Aidan O'Dwyer



Imperial College Press

- 3<sup>rd</sup> ed, 1935-2008, 600+ pages, 2009.
- 33 pages of references





IFAC 2020 WORLD CONGRESS BERLIN, GERMANY. 12 - 17 JULY, 2020 MESA Lab

## Thanks for Your Attention!