Advances in PID control for processes with constraints

Prof. Julio Elias Normey-Rico

Automation and Systems Department Federal University of Santa Catarina - Brazil

IFAC WC 2020 – Berlin – July 2018

2020 IFAC WORLD CONGRESS

Process control

Manipulated variables (MV) are constrained

- Amplitude constraints
- Slew-rate constraints

Process variables (PV) need to be constrained

- Operational limits
- Safety

Actuator limitations

Most used in industry: PID + Saturation blocks in MV + AWP

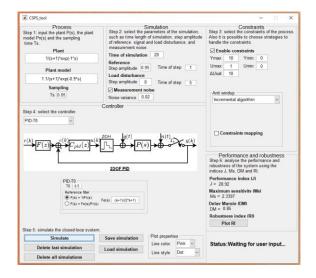
Use new ideas to improve PID AWP performance

- 1. Motivating example
- 2. PID control review and wind-up
- 3. PID control with AWP Proposed solution
- 4. Conclusions

http://rodolfoflesch.prof.ufsc.br/cspstool

CSPS - Constrained SISO Process Simulation tool

Simulation tool



Motivating example

Ex1-Simple model with constraints

Simple model with delay

$$P(s) = \frac{e^{-s}}{s}$$

Several closed-loop simulations:

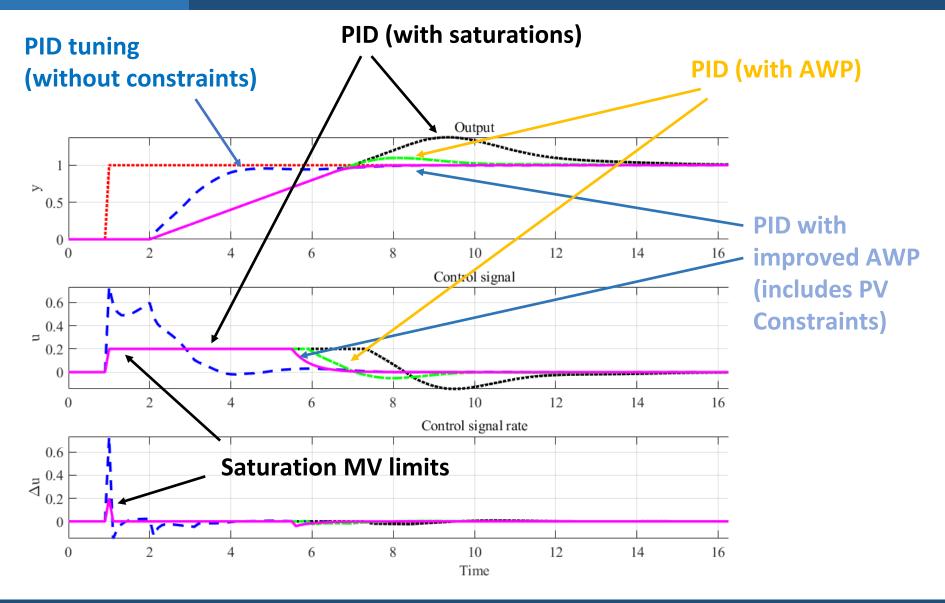
- PID tuning
- No constraints
- Constraints no AWP
- Constraints classical AWP
- Constraints Improved AWP

$$U_{max} = 0.2$$
 $U_{min} = -0.2$
 $\Delta U_{max} = 0.2$
 $Y_{max} = 1$

Ex1-Simple model with constraints

PID tuning PID control with AWP Conclusions

Motivating example



PID tuning

Unified PID formulation

Process models: FOPDT, IPDT, UFOPDT

$$\frac{K_p}{1+sT}e^{-Ls} \qquad \frac{K_p}{s}e^{-Ls} \qquad \frac{K_p}{sT-1}e^{-Ls}$$

PID form: Filtered derivative action

$$C(s) = K_p + \frac{K_i}{s} + \frac{K_d s}{1+s\alpha}$$

PID tuning: low frequency approximation of the Filtered Smith Predictor

Tuning parameter = closed-loop time constant To (trade-off)

Discrete controller Conclusions

Motivating example

PID control with AWP

Discrete controller – proper sample-time selection T_s

Parallel form
$$C(z) = K_p + \frac{K_i T_s z}{z-1} + \frac{K_d}{\alpha + \frac{T_s z}{z-1}}$$

$$u(k) = u_p(k) + u_i(k) + u_d(k)$$

$$u_p(k) = K_p e(k),$$

$$u_i(k) = u_i(k-1) + K_i T_s e(k),$$

$$u_d(k) = \frac{K_d \left[e(k) - e(k-1) \right] + \alpha u_d(k-1)}{\alpha + T_s}$$

Discrete controller

Compact form
$$C(z) = \frac{n_0 + n_1 z^{-1} + n_2 z^{-2}}{(1 - z^{-1})(1 - \beta z^{-1})}$$

 $u(k) = (1+\beta)u(k-1) - \beta u(k-2) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2)$

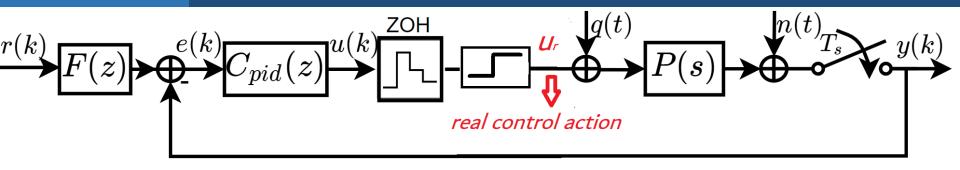
- β, n_i are computed with the given $K_p, K_i, K_d, \alpha, T_s$
- $\beta = 0$ ideal case (without derivative filter)

Incremental form: $\Delta u(k) = u(k) - u(k-1)$

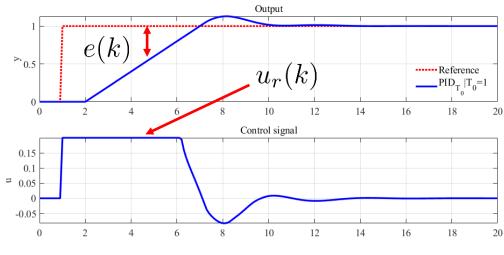
$$\Delta u(k) = \beta \Delta u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2)$$

PID control with AWP

Saturation problems



- Saturation when $u(k) \neq u_r(k)$
- Integral action increases



$$u_i(k) = \underbrace{u_i(k-1)}_{k} + K_i T_s e(k)$$
$$e(k) > 0$$

ui(k) only decrease when *e(k)* changes its signal

But, as $u_i(k) >> u_r(k)$, needs some time to go out from saturation

Causes WIND UP

Anti Windup techniques

Incremental algorithm

$$\Delta u(k) = \beta \Delta u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2)$$

Algorithm : Incremental algorithm

1 Compute
$$\Delta u(k)$$

2 if $\Delta u(k) + u(k-1) \leq u_r(k)$ then
3 $\lfloor u(k) = \Delta u(k) + u(k-1)$
4 else

No tuning parameter

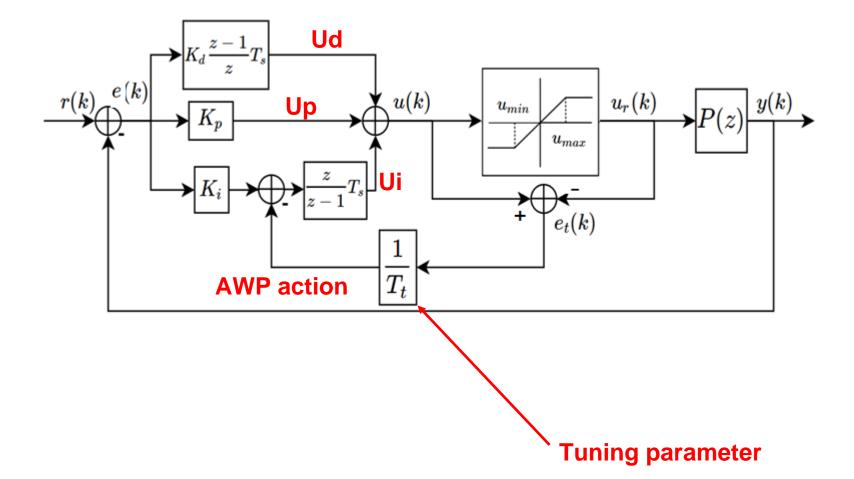
5
$$\Delta u(k) = u_r(k) - u(k-1)$$

6 $u(k) = u_r(k)$

code update:
$$\Delta u(k-1) \leftarrow \Delta u(k)$$

Anti Windup techniques

Back-calculation



Anti Windup techniques

Error Recalculation (ER)

Recalculate the error signal at every sample to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

$$u(k) = (1+\beta)u(k-1) - \beta u(k-2) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2)$$

$$u(k) > u_{max} \to u_r(k) = u_{max}$$

Consider:

$$u_{r}(k) = (1+\beta)u(k-1) - \beta u(k-2) + n(e(k) + n_{1}e(k-1) + n_{2}e(k-2))$$
?
Used in the code to
update the error:
$$e^{*}(k) = e(k) + \frac{u_{r}(k) - u(k)}{n_{2}}$$
Used in the code to
update the error:

 n_0

No tuning parameter

 $e(k-1)=e^{(k)}$

Ex2- Anti Windup techniques

Comparing AWP methods

Simple example using the simulation tool

$$P(s) = \frac{1}{s+1}e^{-s}$$

- Simulation for a 0,95 step
- PID tuning with To=0,5
- Only MV saturation U_{mx}=1, U_{min} =0.

Improved AWP

Classical AWP works with simple saturation

 $\underline{U} \le u(k) \le \overline{U} \quad \forall k \ge 0,$

Typical process constraints consider other variables

$$\begin{array}{ll} \underline{u} \leq u(k) - u(k-1) \leq \overline{u} & \forall k \geq 0, \\ \underline{y} \leq y(k) \leq \overline{y} & \forall k \geq 0. \end{array} \end{array}$$

Solution: To map the constraints to the manipulated variable! How? → Using some prediction ideas (MPC concepts)

Direct

Improved AWP

Mapping constraints (Max case)

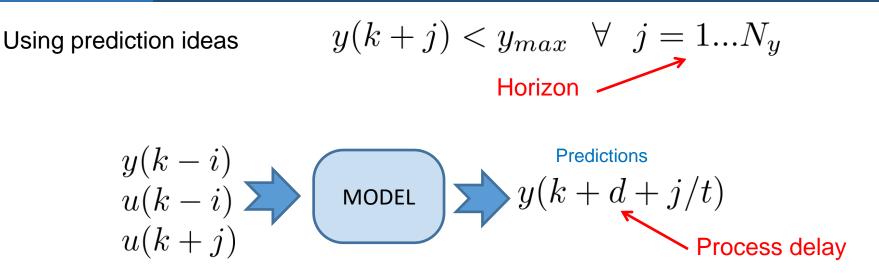
 $u(k) < U_{max}$

$$\begin{split} u(k) < \Delta u_{max} + u(k-1) \\ y(k) < y_{max} & \text{Depends on past values of control action!} \\ \text{Using model} & y(k) = f(u(k-i), y(k-i)) \\ u(k) \text{ will affect the future values of } y(k) & & & & & & & \\ \end{split}$$

 $\Delta u(k) < \Delta u_{max}$

 $\Delta u(k) = u(k) - u(k-1) < \Delta u_{max}$

Improved AWP



We do not know the future and we are going to apply only u(k) at $t=kT_s$

$$u(k+j) = u(k) \quad \forall j \implies y(k+d+j/k) = f(u(k), y(k-i), u(k-i))$$

The same idea in MPC , Control horizon $N_u = 1$

Improved AWP

Problem to be solved

$$y(k+j) < y_{max} \quad \forall \ j = 1...N_y$$

$$f(j, u(k), y(k-i), u(k-i)) < y_{max}$$

A set of inequations to obtain *u*(*k*)

 $u(k) < u_j \quad \forall j$

$$u(k) < \min_j [u_j] = U_j \quad \forall j$$

Final constraint

$$u(k) < \min\{U_{max}; \Delta u_{max} + u(k-1); U_j\} = \overline{U}_{sat}$$

PID AWP control is then computed using this \overline{U}_{sat} (Repeat for min condition)

Ex3- Improved AWP

Example:
$$P(z) = \frac{bz^{-d}}{z-a} \implies y(k) = ay(k-1) + bu(k-d-1)$$

$$0 \leq u(k) \leq 1 \quad \forall k \geq 0,$$

$$-0.1 \leq u(k) - u(k-1) \leq 0.1 \quad \forall k \geq 0,$$

$$-1.5 \leq y(k) \leq 1.2 \quad \forall k \geq 0.$$

Max constraints

$$u(k) \le 1$$

$$\Delta u(k) \le 0.1 \rightarrow u(k) \le 0.1 + u(k-1)$$

$$y(k+d+j) \le 1.2 \qquad j=1,2$$

$$y(k+d) = a^d y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

Known past Values

Ex3-Improved AWP

$$y(k+d+j) = a^{j}y(k+d) + \underbrace{(a^{j-1} + a^{j-2} + \dots + 1)b}_{K_{j}} u(k)$$

$$y(k+d+j) \le 1.2$$
 $\sum u(k) \le \frac{1.2-a^j y(k+d)}{K_j}$ $j = 1, 2$

$$u(k) \le \min\{1; 0.1 + u(k - 1); \frac{1.2 - ay(k+d)}{K_j}; \frac{1.2 - a^2y(k+d)}{K_j}\}$$
Past data

Min constraint

$$u(k) \ge \max\{0; -0.1 + u(k-1); \frac{-1.5 - ay(k+d)}{K_j}; \frac{-1.5 - a^2y(k+d)}{K_j}\}$$

Ex3- Improved AWP

Implementation equations for max and min values:

$$y(k+d) = a^{d}y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

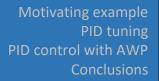
$$\overline{U}_{sat} = \min\{1; 0.1 + u(k-1); \frac{1.2 - ay(k+d)}{K_j}; \frac{1.2 - a^2y(k+d)}{K_j}\}$$

$$\underline{U}_{sat} = \max\{0; -0.1 + u(k-1); \frac{-1.5 - ay(k+d)}{K_j}; \frac{-1.5 - a^2y(k+d)}{K_j}\}$$

Apply the AWP scheme for PID control with \overline{U}_{sat} \underline{U}_{sat}

Simulation Tool Example

Conclusions



- Using MPC ideas PID performance can be improved for process with constraints
- Improved AWP PID algorithms can be the solution in modern real-time distributed control systems for simple constrained systems
- Simulation tools are very important for analysis and design

Thanks!

For your attention

IFAC 2020 organizers

julio.normey@ufsc.br

Advances in PID control for processes with constraints

References

Astrom, K.J. and Hagglund, T. (1995). PID controllers: theory, design, and tuning.

Camacho, E.F. and Bordons, C. (2013). Model Predictive Control. Springer, London.

da Silva, L.R., Flesch, R.C.C., and Normey-Rico, J.E. (2018). Analysis of anti-windup techniques in PID control of processes with measurement noise. In 3rd IFAC Conference on Advances in Proportional-Integral- Derivative Control, 948-953. Ghent, Belgium.

da Silva, L.R., Flesch, R.C.C., and Normey-Rico, J.E. (2019). Controlling industrial dead-time systems: When to use a PID or an advanced controller. ISA Transactions. doi:10.1016/j.isatra.2019.09.008.

Fertik, H.A. and Ross, C.W. (1967). Direct digital control algorithm with anti-windup feature. ISA Transactions, 6(4), 317.

Flesch, R.C., Normey-Rico, J.E., and Flesch, C.A. (2017). A unified anti-windup strategy for SISO discrete deadtime compensators. Control Engineering Practice, 69, 50-60.

Guzman, J.L., Astrom, K.J., Dormido, S., Hagglund, T., and Piguet, Y. (2006). Interactive learning modules for PID control. IFAC Proceedings Volumes, 39(6), 7-12.

Hippe, P. (2006). Windup in Control: Its Effects and Their Prevention. Springer Science & Business Media.

Normey-Rico, J.E. and Camacho, E.F. (2007). Control of Dead-time Processes. Springer, London.

Normey-Rico, J.E. and Guzman, J.L. (2013). Unified PID tuning approach for stable, integrative, and unstable dead-time processes. Industrial & Engineering Chemistry Research, 52, 16811-16819.