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ILC Basics

Applicable to systems that repeat the same finite duration
task over and over again.

Each repetition is known as a trial (or iteration or pass)
and its duration is known as the trial length.

Notation for discrete variables: hi(p), 0 ≤ p ≤ α− 1.

h – vector or scalar valued variable under consideration,
i ≥ 0 — trial number, α <∞ — number of samples
along the trial.
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ILC Basics

Let r(p) be the specified reference trajectory.

Then the error on trial i is

ei(p) = r(p)− yi(p), 0 ≤ p ≤ α− 1, i ≥ 0

Error convergence from trial-to-trial (i) is a fundamental
consideration in ILC design.

Performance along the trials is also a critical
consideration.
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ILC Basics

ILC Design Problem

Construct a control input sequence {ui}i such that

lim
i→∞
||ei || = 0 & lim

i→∞
||ui − u∞|| = 0

u∞ is termed the learned control.

|| · || – an appropriate norm.

Basic ILC Design Philosophy: use previous trial data
to update the control signal for the next trial and
thereby improve performance from trial-to-trial.
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ILC Basics

Typical ILC control law: control input on trial i + 1 is
that used on the previous trial plus a ‘correction’ based
on previous trial data, i.e.,

ui+1(p) = ui(p) + ∆(ei(p))

∆(ei(p)) is the correction term.

Key issue: how to design ∆(ei(p))?

Phase-Lead ILC Law

ui+1(p) = ui(p)+βei(p+1) = ui(p)+β(r(p+1)−yi(p+1))
(1)
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ILC Design

‘Phase-Lead’ refers to the shift in p — can be
implemented as the term concerned is generated on the
previous trial.

PD Type ILC law:

ui+1(p) = ui(p)+kpei+1(p+1)+kd [ei(p+1)−ei(p)] (2)

Sometimes referred to as a ‘non-causal’ ILC law due to
the p + 1 index in these two laws.

Many other versions exist.
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ILC Design

Fact: If there is no non-causal term in an ILC law then
an equivalent feedback control loop exists.

Two general approaches to design – one is based on
assembling the values of a variable along the trial into a
column vector. Known as lifting ILC design in the
literature.

Second method – treat ILC as a 2D system, i.e.,
information propagation from trial-to-trial (i) and along
the trials (p).

One starting point for the early literature: Douglas A
Bristow and Maria Tharayil and Andrew G. Alleyne
(2006). A survey of iterative learning control. IEEE
Control Systems Magazine 26(3), 96–114.
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Progress So Far

Very significant progress for systems described by
deterministic linear time-invariant dynamics, including
robust designs.

A very high level of at least experimental validation.

New applications continue to emerge — including outside
engineering.

Personal view — applications are now in the driving seat.

E.Rogers

PI and PD type Iterative Learning Control Laws for Application in Wind Farms 10/ 42



Iterative Learning Control Wind Turbine Control Basics Active Flow Control (AFC) Modeling the Flow ILC Results Conclusions/Future Work/References

Progress So Far

Stochastic linear dynamics — some progress, e.g.,

Repetitive Process based Stochastic Iterative Learning
Control Design for Linear Dynamics, Pavel V. Pakshin,
Julia Emelianova, Eric Rogers and Krzysztof Galkowski,
2020, Systems and Control Letters, (137), Article 104625.

Nonlinear systems — (too) many papers on error
convergence proofs but some results emerging on design,
e.g.,

Passivity based Stabilization of Repetitive Processes and
Iterative Learning Control Design, Pavel Pakshin, Julia
Emelianova, Mikhail Emelianov, Krzysztof Galkowski, Eric
Rogers 2018, Systems and Control Letters, (122),
101–108.
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(Some) New Areas

Distributed Parameter Systems – some work on
semi-group approaches and also on constructing a
finite-dimensional approximate model for design, e.g.,

Iterative Learning Control for a Class of Multivariable
Distributed Systems With Experimental Validation,
Slawek Mandra, Krzysztof Galkowski, Andreas Rauth,
Harald Aschemann, Eric Rogers, 2020, IEEE Transactions
on Control Systems Technology, Regular paper, DOI
10.1109/TCST.2020.2982612.

Healthcare — such as robotic-assisted stroke
rehabilitation.

Networked systems.
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Wind Turbine Control
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Blade sizes are also increasing.
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Wind Turbine Control
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Wind Turbine Control

Bigger blades imply more energy capture.

Wind turbine control plays a very important role as it
enables a better energy capture together with alleviation
of mechanical and aerodynamical loads and aim for
lower maintenance costs.

Wind turbine control objectives include improving power
production in its safe operating region (below rated wind
speed) and preventing the unsafe operation in high wind
speeds (above rated speed) by limiting the rotor speed
and torque.
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Wind Turbine Control

Torque Control Pitch Control 

Active Flow Control 
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Wind Turbine Control

Wind turbine blades are subject to fluctuating
aerodynamic forces involving stochastic and deterministic
disturbances.

The stochastic disturbances occur because of the variable
nature of the wind.

Deterministic forces include the effects of yaw
misalignment, stator-rotor interaction and atmospheric
boundary layer.

The load disturbances caused by effects such as wind
shear, tower shadow or yaw motion are cyclic as they arise
due to the rotation of the rotor.
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Wind Turbine Control

Wind shear (wind gradient), is a difference in wind speed
or direction over a short distance in the atmosphere.

Precisely, the mean speed increases with height.
Moreover, the actual wind speed varies in time and
direction at different locations due to turbulence.

Hence, the flow past the blade contains a periodic
component which becomes even larger as these
effects increase.
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Wind Turbine Control

Left: wind speed profile, right: tower shadow.

Tower shadow effect is the alteration in uniform flow of
wind due to the presence of the tower. For an upwind
turbine, when the blade is directly in front of the tower, it
experiences minimum wind.
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Wind Turbine Control

These problems are compounded in Wind Farms

Various flow phenomena in wind farms.

E.Rogers

PI and PD type Iterative Learning Control Laws for Application in Wind Farms 20/ 42



Iterative Learning Control Wind Turbine Control Basics Active Flow Control (AFC) Modeling the Flow ILC Results Conclusions/Future Work/References

Aerodynamic Load Control

Aerodynamic load control for wind turbines is directly
linked to modification of the lift force on the blades, by
e.g.,

varying the rotor speed,
varying the blade pitch angle,
varying the blade length,
modifying the blade section aerodynamics – considered
in this research.

The modern approach includes more flexible structures
on the blades coupled with control algorithms —
and incorporates devices such as trailing-edge flaps or
microtabs which are called ‘smart rotors‘. (Also
enables fast actuation).
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Aerodynamic Load Control
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Active Flow Control (AFC)

AFC devices are placed along the span of the rotor blade
(e.g. on the trailing-edge) and act by modifying the local
flow and therefore the lift.

A blade with trailing-edge flaps (blue) and Pitot tubes
(red) is shown in this figure.
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AFC Benefits

AFC devices would react quickly and reduce oscillatory
high frequency loads and:

Increase the blade lift at low wind speeds and therefore
allowing an earlier cut-in.

Enabling the blade to operate on higher lift curve.

Aerodynamic performance improvement and noise
reduction.

Countering tower shadow every revolution (downwind
turbines).
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Flow Model

A Computational Fluid Dynamics (CFD) panel code is
used to simulate the flow past an airfoil.

The flow over a 2D airfoil is simulated and the boundary
conditions at the body are satisfied using the panel
method.

The flow is assumed to be inviscid (i.e., zero viscosity
(zero resistance to deformation at a given rate)) and
extreme cases when separation is provoked are not
considered.

The motion of the vortices, i.e., flow revolving around
an axis is found by solving the Euler equations (a
numerical solution can be found using any time-stepping
method, e.g. Runge-Kutta methods).
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Flow Model

The wake effect (the region of recirculating flow
immediately behind a stationary or moving flow) is
simulated by releasing vortices from the trailing edge at
each time step.

The lift is calculated from the pressure distribution using
the unsteady Bernoulli equation.

The AFC devices are modelled in a generic manner by
altering the strength of the new vortex generated at the
trailing edge at each time step.
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Flow Model

The governing equation for a 2D inviscid incompressible
fluid is

Dω

Dt
=
∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
= 0 (3)

D/Dt = ∂/∂t + vx∂/∂x + vy∂/∂y denotes the material
derivative

ω = ∂vy/∂x − ∂vx/∂y denotes the vorticity.

The lift is the output variable and its calculation is based
on the fact that the surface of the airfoil is a streamline
with the velocity tangential to the surface and the normal
velocity equal to zero
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Modeling Smart Devices

The smart devices are modelled by modifying the
circulation generated on the trailing edge.

In the controlled case, at every time step a new vortex
generated from the trailing edge will have a strength

Γc = u (4)

where u denotes the control input.

Altering the circulation on the trailing edge modifies the
lift and represents devices such as flaps or microtabs
which also act by generating vortices or changing the flow
on the trailing edge. This is a generic approach to
modeling smart rotors.
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Model Free ILC Results

The flow past an airfoil is assumed to be periodic with
the velocity equal to

V0x(k) = 1 + A sin(
2πk∆t

T
) (5)

where A denotes the amplitude of the oscillation and T
denotes the period of turbine’s rotation.

The discrete version of the signals is used with
k = 0, 1, ..., α− 1 denoting the step within a cycle and
α = T/∆t denoting the number of steps in one cycle,
where ∆t is the time step.
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Model Free ILC Results

The lift obtained for such flow will be periodic and the
control objective can be defined as rejecting periodic
disturbances by keeping the lift constant.

This can be achieved by altering the lift on the rotor
blades such that the error between the lift and the desired
(constant) value for the lift is minimal.

The error at step k is given by

e(k) = Lref (k)− L(k) (6)
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Model Free ILC Results

Lift (left) and error (right) for oscillatory flow with no
control.
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Model Free ILC Results

Two norms are used to measure the performance:

2-norm

L2 =

√√√√ 1

α
·

α∑
k=1

(e(k))2 (7)

(a measure of the error averaged over a trial).

∞-norm
L∞ = max |e(k)| (8)

(a measure of the maximum error).
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Phase-lead ILC

To reduce the lift fluctuations, consider the phase-lead
ILC law

ui(k) = ui−1(k) + µ1∆tei−1(k + δ) (9)
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Lift (left) and error (right) obtained for the system with
the ILC controller of Eq. (9).
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Model Free ILC Results

For µ1 = 0.1, the 2-norm L2 = 4.2× 10−2 is obtained
after 10 trials compared to L2 = 6.7× 10−2 for the no
control case.

The ∞ norm is L∞ = 6.7× 10−2 and L∞ = 9.8× 10−2,
respectively.

Other permutations produced no better results (or worse).
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Feedback plus ILC

Control law
ui(kt) = ui(k) + u(kt) (10)

where: kt = iα + k is the total number of steps, ui(k) is
the ILC update

u(kt) and is the proportional controller update given by

u(kt) = µ0∆te(kt − 1) (11)

where µ0 is the P controller gain.
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Feedback plus ILC
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Figure: Lift (left) and error (right) obtained for the system with
the ILC controller of Eq. (10)
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Feedback plus ILC

Better performance — after 5 trials the error is
significantly reduced for the choices of µ0 = 20 and
µ0 = 50

Over 90% reduction in the ∞-norm.

Further increasing the gain is not possible.

This last controller is better — as the next figure
demonstrates.

Note: actuator dynamics not considered.
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Comparison

5 10 15 20

Time

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Li
ft

Desired lift
Lift - combination of P and ILC

2 4 6 8 10 12 14

Trial

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

or
 n

or
m

Error - 2-norm
Error - ∞ norm

Figure: Lift (left) and error norm (right) obtained for the system
controlled by the combination of P and ILC given by Eq. (10)
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Gain Varying ILC law

ui(k) = ui−1(k) + µ1(i)∆tei−1(k + δ) (12)

where µ1(i) is the function of the trial number.

Generally gives better results, but more trials needed.

The results so far are without disturbances.

Disturbances can be introduced by adding vortices
upstream — the next figure shows the results for the case
of three added vortices.
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Disturbance Rejection
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Figure: Robustness test 3 for non-deterministic flow: lift (left) and
error (right)

E.Rogers

PI and PD type Iterative Learning Control Laws for Application in Wind Farms 40/ 42



Iterative Learning Control Wind Turbine Control Basics Active Flow Control (AFC) Modeling the Flow ILC Results Conclusions/Future Work/References

Conclusions/Further Work

Progress on model-free ILC design – establishes basic
feasibility.

Development of tuning rules.

A next step is model-based ILC design – work underway
using Proper Orthogonal Decompositions (PODs) for
model construction coupled with Norm Optimal ILC.

Investigation and comparison of various actuators and
their locations.

Comparison with Repetitive Control designs.
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Conclusions/Further Work
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