Machine Learning meets Model-based Control
Organisers
- Ali Mesbah
- Boris Houska
The workshop will run on 11 July 2020 from 10:00 until 17:00 Berlin time (10am until 5pm CEST/UTC+2h). The presentations will also be available for streaming from 10 July until 31 August 2020 for registered participants.
Speakers
- Alberto Bemporad, IMT School of Advanced Studies Lucca, Italy
- Francesco Borrelli, University of California Berkeley, USA
- Jay H. Lee, Korea Advanced Institute of Science and Technology, South Korea
- Eric Kerrigan, Imperial College London, UK
- Matthias Müller, Leibniz University Hannover, Germany
- Sergio Lucia, TU Berlin, Germany
- Michal Kvasnica, Slovak University of Technology in Bratislava, Slovakia
- Ugo Rosolia, Caltech, USA
- Melanie Zeilinger, ETH Zürich, Switzerland
Summary
Model-based control methods such as model predictive control have found
                                                increasing utility in emerging complex engineering applications,
                                                including unmanned vehicles, robotics for the control of quadrotors,
                                                humanoid robots, energy systems and biomedical systems. This is due to
                                                the versatility of model-based control methods and their ability to
                                                provide robustness, safety guarantees and economics-oriented control.
                                                Yet, many model-based control applications face challenges related to
                                                the difficulty of modeling complex systems or the need for control
                                                strategies with provably safe and robust performance that have low
                                                online computational and memory requirements.
 The last years have
                                                witnessed an enormous interest in the use of machine learning techniques
                                                in different fields, including control systems, which is partly driven
                                                by the demonstrated success of machine learning methods in the field of
                                                computer science, but also by the increasing availability of data as
                                                well as new computation, sensing and communication capabilities. The
                                                integration of machine learning with model-based control, for example,
                                                in the form of learning a system’s model, the cost function or even the
                                                control law directly, raises fundamental challenges related to the
                                                controller properties, such as stability, convergence, constraint
                                                satisfaction and performance under uncertainty. The objective of this
                                                pre-conference workshop is to serve as a forum to discuss the latest
                                                research advances at the interface between machine learning and
                                                model-based control in order to establish important synergies and
                                                contribute to solve the arising challenges. Specifically, the workshop
                                                will focus on the development of theoretical guarantees, methods and
                                                software as well as challenging applications in the field of machine
                                                learning and model-based control. The workshop will cover the following
                                                topics:
 • Approximation of complex model-based control laws using
                                                machine learning
 • Machine learning for adaptive and
                                                learning-based control
 • Model-based control using machine
                                                learning models
 • Reinforcement learning
 This one-day
                                                workshop will consist of three plenary talks of 45 min and five keynote
                                                talks of 30 min. The organizers will conclude the workshop by
                                                highlighting the main takeaways of the different talks. All workshop
                                                notes and slides will be made available on the workshop’s website. A
                                                live session for discussions with the speakers will be
                                                held at the end of the workshop, around 15:00 / 3pm Berlin time
                                                (CEST/UTC+2).
Programme
Machine Learning: A New ICE (Identification, Control, Estimation) Age?, Alberto Bemporad
Control theory always evolved by taking full advantage of developments in
                                                other disciplines, for example frequency-domain methods have leveraged
                                                on complex analysis, state-space approaches on linear algebra,
                                                optimization-based analysis and synthesis on linear matrix inequalities,
                                                model predictive control (MPC) on numerical optimization
                                                (quadratic/nonlinear/mixed-integer programming). In recent years, a
                                                variety of different approaches and advanced software tools were
                                                developed by the machine learning community and have been proved
                                                amazingly successful in many application domains. It is therefore likely
                                                that they will have a strong impact also in the field of systems and
                                                control, enabling the development of a whole new set of tools for
                                                identification, control, and estimation (ICE) of dynamical systems. In
                                                my talk I will provide evidence of how machine learning tools can be
                                                used to develop new control design methods by reviewing some results
                                                recently obtained by my research group, including the use of artificial
                                                neural networks for MPC based on quadratic or
 mixed-integer
                                                programming, stochastic gradient descent methods for optimal policy
                                                search, reinforcement learning for MPC, Bayesian optimization for MPC
                                                auto-tuning, and preference-learning methods for semi-automatic
                                                calibration of MPC systems.
Learning Predictive Control and Dynamic Programming,
                                                    Francesco Borrelli and Ugo Rosolia
Forecasts play a major role in autonomous and semi-autonomous
                                                systems.Applications include transportation, energy, manufacturing and
                                                healthcare systems. Predictions of systems dynamics, human behavior and
                                                environment conditions can improve safety and performance of the
                                                resulting closed-loop system. However, constraint satisfaction,
                                                performance guarantees and real-time computation are challenged by the
                                                growing complexity of the engineered system, the human/machine
                                                interaction and the uncertainty of the environment where the system
                                                operates. Our research over the past years has focused on predictive
                                                control design for systems performing iterative tasks with safety
                                                guarantees.  In this talk I will first provide an overview of the
                                                theory we have developed for the systematic design of learning
                                                predictive controllers.  Then, I will focus on comparing the
                                                proposed approach with classical approximate dynamic programming
                                                approaches. Throughout the talk I will focus on autonomous cars to
                                                motivate our research and show the benefits of the proposed
                                                techniques.
Reinforcement Learning –
                                                    Model-Based or Model-Free?, Jay H. Lee
This talk discusses and compares model-based vs. model-free Reinforcement
                                                Learning (RL), especially for industrial decision making problems. 
                                                It is argued that, given limited opportunity for data gathering and
                                                active
 exploration for industrial production processes, it is
                                                often critical to have a model of some form, which can provide a basis
                                                for the efficient and parsimonious learning. Although purists will argue
                                                that RL is meant to be
 model-free, the data requirement for it is
                                                too demanding for most industrial process control applications. Model is
                                                needed not only for on-line optimization, but also for off-line learning
                                                to obtain a good initial form of the value function and the policy which
                                                can be further refined on-line. We introduce some model-based algorithms
                                                for batch processes, which can be used for both optimization and
                                                control.
What the machine should learn about
                                                    models for control, Eric Kerrigan
We revisit, with 20/20 hindsight, three fundamental concepts from the
                                                control theory literature, viewed through a machine learning lens from
                                                2020. Within the control community, these concepts are known to various
                                                degrees,
 depending on which group you talk to. Outside of control,
                                                these concepts are either absent or only partially formed. The first
                                                result to call to mind is the internal model principle of control, which
                                                states that a controller can
 only reject a disturbance if the
                                                feedback path contains an internal model of the dynamic structure of the
                                                disturbance. The second is the concept of the gap metric, which measures
                                                how close two systems are from a feedback, rather than open-loop,
                                                perspective. The third, and least widely known, is an extension of
                                                algorithmic information theory that allows one to measure the
                                                informativeness of a model, particularly if the system is
                                                "badly-defined" [Maciejowski, Automatica, 1979]. These three
                                                ideas should be reintroduced, to the control community and beyond, if we
                                                are aiming to understand fundamental trade-offs between complexity,
                                                robustness and performance when designing learning-based controllers.
                                            
Data- and learning-based model predictive control, Matthias
                                                    Müller
Model predictive control (MPC) is one of the most successful modern control technologies. Existing MPC schemes typically require the availability of a (sufficiently good) model in order to achieve desired closed-loop stability and performance guarantees. On the other hand, in situations when the (a priori) identification of a suitable model is difficult or impossible, control schemes are of great relevance and interest which (i) use machine learning techniques for model and/or controller learning or (ii) are purely data-based. In this talk, we present some recent results on data- and learning-based MPC. In particular, we first discuss MPC schemes using different techniques for model learning, such as Gaussian Processes or kinky inference, and for which desired closed-loop properties can be derived. Second, we will present a purely data-based MPC framework where the control action is computed solely based on previously measured input/output data.
Efficient design and probabilistic validation approximate
                                                    robust MPC controllers based on deep learning, Sergio Lucia
                                            
Solving model predictive control problems in real time is still an important challenge despite of recent advances in computing hardware, optimization algorithms and tailored implementations. This challenge is even greater when uncertainty is present due to disturbances, unknown parameters or measurement and estimation errors. To enable the application of advanced control schemes to fast nonlinear systems and on low-cost embedded hardware, we propose to approximate a robust nonlinear model controller using deep learning and to verify its quality using a-posteriori probabilistic validation techniques. We show how a deep neural network with a determined size can exactly represent a linear MPC feedback law. To achieve guarantees in the more general case where only an approximation of the exact feedback law is achieved, we propose a probabilistic validation technique together with the use of constraint tightening techniques. The potential of the proposed approach is illustrated with simulation results of several uncertain nonlinear system.
Learning more from less data: when quality trumps quantity,
                                                    Michal Kvasnica
In this talk we show that, when learning model-based feedback laws from
                                                data, it is the quality of the training data that is important, and not
                                                its quantity. Specifically, we cover two version of machine learning
                                                applied to learning feedback controllers. One is based on applying
                                                classification trees and hidden Markov models to learn directly the
                                                feedback law from data, which is obtained by simulating a given
                                                model-based controller in a particular fashion. The second approach is
                                                based on constructing a machine learning procedure that comes up with a
                                                good guesses of the initial active set for the subsequent active
                                                set-based numerical optimization. In both cases we illustrate that a
                                                good notion of "fruitfulness" of training data is not given in
                                                terms of quantity, but in terms of how many distinct active sets the
                                                data covers. Numerous motivating examples will be presented to confirm
                                                this claim.
  
Towards Safe Learning in Complex Control Systems, Melanie Zeilinger
Most autonomous systems have traditionally been designed to act in isolated and well-defined environments. New applications are moving these systems, in particular robots, into our daily environments, where they have to be able to cope with complex tasks, uncertain environments and human interaction. These challenges, together with the increasing availability of sensing and computation, are driving a growing interest in learning and data-driven control techniques. Their success in practical applications and their wide-scale adoption is, however, limited by safety concerns when integrating learning in a closed-loop, automated decision-making process. In this talk, I will present some of our recent results on integrating safety constraints with learning-based control. By combining concepts from model-based constrained control with data-driven techniques we provide methods that can automatically adapt to achieve maximum performance and learn to perform complex tasks, while acting cautiously with respect to safety constraints. The ideas will be highlighted with examples for control of robotic systems.
Live session, discussion with the speakers, around 15:00 / 3pm Berlin time (CEST/UTC+2)